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Abstract Across diverse biomes and climate types, plants use water stored in bedrock to sustain plant
transpiration. Bedrock water storage (Sbedrock), in addition to soil moisture, thus plays an important role in water
cycling and should be accounted for in the context of surface energy balances and streamflow generation. Yet,
the extent to which bedrock water storage impacts hydrologic partitioning and influences latent heat fluxes has
yet to be quantified at large scales. This is particularly important in Mediterranean climates, where the majority
of precipitation is offset from energy delivery and plants must rely on water retained from the wet season to
support summer growth. Here we present a simple and modified water balance approach to quantify the role of
Sbedrock on controlling hydrologic and energy partitioning. Specifically, we tracked evapotranspiration in excess
of precipitation and mapped soil water storage capacity (Ssoil, mm) across the western US in the context of
Budyko's water partitioning framework. Our findings indicate that Sbedrock is necessary to sustain plant
transpiration across forests in the Sierra Nevada—some of the most productive forests on Earth—as early as
April every year, which is counter to the current conventional thought that bedrock is exclusively used late in the
dry season under extremely dry conditions. We found that the proportion of water that returns to the atmosphere
would decrease dramatically without access to Sbedrock. When converted to latent heat energy, the median
monthly flux associated with evapotranspiration of Sbedrock can exceed 100 W/m

2 during the dry season.

Plain Language Summary Plants frequently use water stored in bedrock (Sbedrock) in order to grow.
However, the proportion of precipitation that returns to the atmosphere (evapotranspiration) versus to streams
(runoff), and the amount of latent heat—the energy associated with evaporating water—used as a result of
access to Sbedrock has not been measured. In Mediterranean climates, such as parts of the western US, the
majority of energy (sunlight) is received during the dry season and plants must rely on water stored belowground
during the wet season to sustain summer growth. In this study, we present two methods for calculating how
much Sbedrock influences the amount of water returning to the atmosphere versus streams and what that
corresponds to in terms of latent heat energy at the surface. We use gridded data to compare the amount of water
entering (precipitation) and exiting (evapotranspiration) the area and use a mapped soil water storage capacity
product to draw conclusions about the timing and magnitude of plant transpiration that is a result of access to
bedrock water. Our findings indicate that some of the Earth's most productive forests use Sbedrock early in the
growing season, consuming over 100 W/m2 of latent heat energy in the summer.

1. Introduction
Globally, more precipitation (P) is returned to the atmosphere via evapotranspiration (ET ) than is returned to the
ocean via streamflow (Q) (Jasechko et al., 2013; Trenberth et al., 2007). Locally, precipitation partitioning be-
tween streamflow and evapotranspiration is mediated by climate. The relative magnitudes of the water balance
components at a location are dictated by the availability of water supply (precipitation) versus demand (energy)
(Budyko, 1974). Over long time frames, where change in storage (ΔS) can be considered negligible, the ratio of
evapotranspiration relative to precipitation (i.e., the evaporative index, ϵ = ET/P = 1 − Q/P) can be estimated
based on the ratio of potential evapotranspiration (PET ) relative to precipitation (the aridity index, Φ = PET/P;
see Table 1 for a list of variables and their definitions). In practice, most catchments fall near a single curve—the
Budyko curve—when plotted in ET/P versus PET/P space. A number of parametric extensions have been pro-
posed to the Budyko equation that account for seasonality (Feng et al., 2012; Hickel & Zhang, 2006; Xing
et al., 2018), vegetation cover (Chen et al., 2013; Donohue et al., 2007; M. Liu et al., 2022; L. Zhang et al., 2001),
subsurface storage dynamics (Milly, 1994a), and other catchment‐specific characteristics (e.g., Choudhury, 1999;
Lhomme & Moussa, 2016; H. Yang et al., 2014) and a general solution has been mathematically derived that
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Table 1
Description of Referenced Variables

Variable Dimensions Description

A L Accumulated difference; calculated as Fout − Fin over a given timeframe

ASI (–) Asynchronicity index

C (–) Snow cover

C0 (–) Snow cover threshold

Dmax L Maximum observed annual root‐zone storage deficit; equivalent to minimum (annual) SR

Dmin L Minimum observed root‐zone storage deficit in a year

Dtn+1 L Root‐zone storage deficit measured at time tn+1
Ee MT− 3 Latent heat flux associated with evapotranspiration sourced from bedrock water storage,

expressed as power per unit area

ET LT− 1 Evapotranspiration

ETobs LT− 1 Observed evapotranspiration

Fin LT− 1 Inflow

Fout LT− 1 Outflow

MOYbedrock (–) Median month of year when bedrock water is needed to explain observed
evapotranspiration

n (–) Variable used to quantify differences in the evaporative index for a particular aridity index,
defined by (H. Yang et al., 2008)

P LT− 1 Precipitation

Pobs LT− 1 Observed precipitation

PET LT− 1 Potential evapotranspiration

Q LT− 1 Runoff (streamflow)

RR (–) Runoff ratio; calculated as 1 − ϵ

S L Running storage used to calculate Sbedrock(my) which is constrained by zero and Ssoil

Sbedrock L Bedrock water storage

Sbedrock(a) L Lower‐bound maximum plant‐available water storage capacity in bedrock when the deficit
is reset annually, inferred from largest deficit in an average water year less mapped Ssoil

Sbedrock(my) L Lower‐bound maximum plant‐available water storage capacity in bedrock when the deficit
is not reset annually, inferred from total evapotranspiration that occurs after Ssoil has been
fully depleted

Sbedrock(my),month L Monthly (dry season) evapotranspiration sourced from bedrock water storage

Smax L The minimum root‐zone plant‐available storage deficit, inferred from maximum deficit
observed over entire time period of analysis

SR L Median annual lower‐bound root‐zone storage deficit inferred from maximum deficit
observed over a water year; equivalent to (annual) Dmax

Ssoil L The maximum amount of plant‐available water capable of being stored in the soil profile,
from soils mapping

t T Time

ΔHv ML2T− 2 Enthalpy of vaporization of water

ΔS LT− 1 Change in storage

Δϵ (–) Relative difference between ϵobs and ϵw/o bedrock

ϵ (–) Evaporative index; calculated as ET/P

ϵobs (–) Observed evaporative index; calculated as ETobs/Pobs

ϵw/o bedrock (–) Observed evaporative index without bedrock water storage; calculated as ϵobs
(ETobs − Sbedrock(my)/Pobs)

ρw L− 3M Density of water

Φ (–) Aridity index; calculated as PET/P
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captures the catchment characteristics in a single parameter (H. Yang et al., 2008). The relationship described by
Budyko also emerges from process‐based hydrological models (e.g., Donohue et al., 2012; Entekhabi &
Rodriguez‐Iturbe, 1994; Feng et al., 2015; B. Fu, 1981; Porporato et al., 2004, etc.).

It is well documented that catchments with asynchronous climates, defined as climates where the majority of
precipitation is temporally offset from energy delivery (Feng et al., 2019; Klos et al., 2018), are not well rep-
resented by the Budyko framework (e.g., J. Fu &Wang, 2019; Viola et al., 2017). These deviations can be reduced
by incorporating catchment characteristics that account for vadose zone dynamics (e.g., Milly, 1994a; Spo-
sito, 2017), precipitation seasonality (e.g., J. Fu & Wang, 2019), groundwater‐dependent ET (e.g., Wang &
Zhou, 2016) and storage changes (e.g., Condon & Maxwell, 2017), and subsurface critical zone structure (Hahm
et al., 2019). Yet, there have been no attempts to quantify the extent to which bedrock water storage alters annual
hydrologic partitioning at large scales, even though a substantial proportion of plant transpiration is sourced from
bedrock water storage (Sbedrock) in asynchronous climates (e.g., Hahm et al., 2020; Hubbert et al., 2001; Witty
et al., 2003).

The gap in knowledge surrounding Sbedrock dynamics is not limited to hydrologic partitioning. Both global cir-
culation models (GCMs) and dynamic global vegetation models (DGVMs) typically do not parameterize rock
moisture as, historically, it has been difficult to quantify at large‐scales. In asynchronous climates, DGVMs have
been shown to struggle predicting dry‐season plant transpiration and growth (Hickler et al., 2006, 2012) while
GCMs fall short when predicting extreme precipitation and temperature (Tsaknias et al., 2016). After accounting
for bedrock water, Lapides et al. (2024) found that LPJ‐GUESS, a commonly used DGVM, was able to more
accurately capture observed behaviors in the Northern California Coast Ranges. To our knowledge, there have
been no attempts to close this gap in GCMs for the purpose of modeling latent heat flux—the transfer of heat
between the terrestrial biosphere and atmosphere. Relying on soil moisture dynamics to explain latent heat flux
patterns may be sufficient in humid climates, where the availability of atmospheric water vapor is less limiting,
but it accounts poorly for climates that rely on water stored deep in the subsurface to compensate for a lack of
precipitation during the summer dry season. It stands to reason that bedrock water storage, in addition to soil
moisture, is necessary to evaluate land energy budgets. Given that soil moisture content has been shown to in-
fluence extreme daily temperatures (Durre et al., 2000), regulate the number of large fires (Jensen et al., 2018) and
length of the wildfire season (Rakhmatulina et al., 2021), and was a contributing factor to the 2003 record‐
breaking heat wave in Europe (Fischer et al., 2007), the integration of Sbedrock into GCMs could drastically
shift predictions in asynchronous climates.

Early approaches for estimating subsurface storage deficits, calculated by taking the difference between pre-
cipitation and evaporation over time, date back to at least the 1960s (Grindley, 1960, 1968). In the literature, these
methods were used mostly to estimate groundwater recharge (e.g., Finch, 2001; Rushton &Ward, 1979; Rushton
et al., 2006, etc.) and were limited by spatial and temporal data resolution. More recently, remotely sensed water
fluxes have been used to estimate root‐zone storage deficits (SR) at large scales. For example, continental‐scale SR

has been estimated using mass balance approaches (e.g., de Boer‐Euser et al., 2016; Gao et al., 2014; Stocker
et al., 2023) and a methodology for estimating SR at a global scale has been proposed by Wang‐Erlandsson
et al. (2016), and extended to account for snow cover by Dralle et al. (2021), which has been used to investi-
gate ecosystem resilience (Singh et al., 2022), plant water‐use sensitivity resulting from interannual rainfall
variability (Dralle et al., 2020), and drought coping mechanisms in rainforest‐savanna transects (Singh
et al., 2020). Existing field‐scale measurements (e.g., Rempe & Dietrich, 2018), which cannot be extrapolated
over larger scales due to the spatial heterogeneity of plant rooting structures across different climates soil types
and bedrock weathering patterns (Gentine et al., 2012; Sivandran & Bras, 2013), align well with satellite‐derived
SR (McCormick et al., 2021). Root‐zone storage deficits calculated via the deficit method influence the proportion
of precipitation that returns to the atmosphere, for a given aridity index, in Australian catchments (Cheng
et al., 2022). When combined with existing soil water storage capacity data sets (e.g., Gridded National Soil
Survey Geography Database (gNATSGO); Survey Staff, 2019), satellite‐derived SR has been used to estimate
Sbedrock for the contiguous United States (McCormick et al., 2021).

In this study, we examine the extent to which the bedrock root‐zone, which extends beneath the typically thin
(<1 m) soil profile, influences water and energy budgets in the western US. More specifically, we investigate how
plant access to bedrock water controls water partitioning and latent heat fluxes. We use a simple water balance
approach combined with a national soil coverage database (i.e., gNATSGO), gridded water flux data, and a recent
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data set of gridded subsurface water storage capacity to provide insights regarding the transfer of water from
bedrock to the atmosphere. We then use an alternative mass‐balance approach that allows for inter‐annual deficit
accrual and Ssoil prioritization to corroborate the water balance inferences of annual evapotranspiration that is
attributed to access to bedrock water reserves. Finally, we use this method to quantify lower‐bounds on the
amount of annual evapotranspiration accessed from the bedrock root‐zone, infer the influence of Sbedrock on
hydrologic and energy partitioning properties, and show that plant transpiration in many parts of the western US
relies on bedrock water early into the growing season, counter to conventional understanding that bedrock is used
only late in the dry season.

In providing a simple, reproducible framework for quantifying the impacts of Sbedrock on hydrologic and energy
partitioning we look to answer three questions: (a) How early into the growing season do plants in asynchronous
climates rely on Sbedrock to sustain summer growth?; (b) How does access to bedrock water impact the partitioning
of precipitation into evapotranspiration versus streamflow?; and (c) What is the latent heat flux associated with
plant use of bedrock water?

2. Methods
To assess bedrock controls on water and energy partitioning, we apply two approaches: (a) an annual water
balance, which calculates the total inferred annual evapotranspiration sourced from bedrock by tracking incoming
and outgoing water fluxes; and (b) a non‐resetting deficit model, which modifies the annual water balance model
to account for multi‐year deficit accrual and prioritizes Ssoil use. To differentiate between the models, we use the
nomenclature Sbedrock(a) when referring to the model using an annual resetting deficit and Sbedrock(my) when
referring to the multi‐year deficit accrual method. The annual water balance method provides conservative, lower‐
bound constraints on bedrock water use based on conservation of mass, while the non‐resetting deficit model
accounts for multi‐year deficit accrual and better represents the full‐scale of long‐term subsurface storage
dynamics.

In both cases, gridded timeseries of water flux data, in combination with an existing soil water capacity data set
(gNATSGO), are used to estimate the median annual evapotranspiration sourced from bedrock. However, the
input variables of the models differ. The annually resetting water balance method tracks incoming (precipitation)
and outgoing (evapotranspiration) fluxes, at a pixel scale, to determine the amount of evapotranspiration that can
be attributed to bedrock (i.e., ET in excess of soil water storage during dry periods) in a typical water year. The
long‐term deficit method is a similar mass‐balance approach that instead tracks deficit throughout the entire study
period as opposed to on an annual basis (Figure 1). The result represents an alternative method to calculating
Sbedrock that takes into consideration deep bedrock reserves that may be unaccounted for by assuming a resetting
deficit. We then use the latter method to separate the western contiguous US into three categories of varying
degrees of deficit accrual over the study period (Figure 2). Finally, we investigate the timing of bedrock water use
in the growing season and calculate the latent heat energy used to explore the role of plant use of bedrock water on
land surface energy fluxes.

2.1. Study Area

We restricted our study area to winter‐wet, summer‐dry climate regions of the western contiguous US. To identify
these climate regions, we use the asynchronicity index (ASI, (Feng et al., 2019)) calculated from monthly Ter-
raClimate precipitation and potential evapotranspiration values (Abatzoglou et al., 2018). We limited the study
domain to pixels with an asynchronicity index greater than or equal to 0.40. This is a slightly stricter threshold
(0.36) than proposed by Feng et al. (2019) to designate Mediterranean climates as we found 0.36 included parts of
the southwest that are typically classified as semi‐arid or desert using the Köppen‐Geiger climate classification
(Kottek et al., 2006). The masked coverage of the contiguous US, as well as computed asynchronicity index
values, are shown in Figure S1 of the Supporting Information S1.

We additionally masked out pixels where:

1. Long‐term evapotranspiration exceeds precipitation, for example, due to irrigated agricultural lands or data
error;

2. Land cover (via NLCD) that is not classified as evergreen, deciduous, mixed forest or shrub/scrub (see Figure
S14 in Supporting Information S1);
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3. Soil water storage data sets (i.e., gNATSGO) do not have spatial coverage; or
4. Underlying bedrock is greater than 1.5 m (via gNATSGO) from the surface.

For this process, we use a gridded climate product from point observations (Parameter‐elevation Regressions on
Independent Slopes Model (PRISM); C. Daly et al., 2015), the Penman‐Monteith‐Leuning (PML) ET product (Y.
Zhang et al., 2019), the Normalized Difference Snow Index (NDSI) (Hall et al., 2016), the United States

Figure 1. (a) Conceptual diagram describing the root‐zone storage deficit characteristics of a typical water year (October 1–
September 30) in asynchronous climates. At the beginning of the wet season, the deficit accrued during the dry season begins
to decrease as P > ET. Prior to the beginning of the following dry season, the deficit returns to zero and remains at, or near,
zero until ET > P. When ET remains >P such that the deficit surpasses the soil water storage capacity (Ssoil), plant
transpiration is inferred to be a result of access to water stored below the soil layer, that is, Sbedrock. Figure is adapted from
Lapides, Hahm, Rempe, Whiting, and Dralle (2022), Figure 1d. (b) Process outlining pixel‐scale Sbedrock(my) (green)
accumulation under a non‐resetting deficit. ET prioritizes the use of Ssoil (brown; representing maximum pixel‐level soil
water holding capacity) when available and incoming P preferentially refills Ssoil prior to Sbedrock(my). As before, the root‐zone
storage deficit (red) grows during the dry‐season and decreases during the wet‐season but, during extended drought periods,
may not fully replenish every year. Sbedrock(my) grows as a step‐function only when ET exceeds water stored in soil.
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Geological Survey (USGS) National Land Cover Database (NLCD) land cover classification (L. Yang
et al., 2018), and the Gridded National Soil Survey Geographic Database (Survey Staff, 2019). Excluding areas
where depth to bedrock was greater than 1.5 m was due to the availability of soil water storage capacity estimates,
which were limited to 1.5 m depth across CONUS. For a detailed description of the masking process see
McCormick et al. (2021).

Gridded timeseries data used to inform the annual water balance was taken for the 2003–2017 water years
(October 1–September 30). The same timeframe was analyzed using the multi‐year deficit approach; however, the
deficit was calculated from the start of the previous water year (1 October 2001) to account for the possibility that
the deficit was not replenished at the beginning of the study period. In both cases, all data was analyzed using the
Google Earth Engine Python application programming interface (API) (Gorelick et al., 2017). The study period
was chosen to align with the availability of PML ET (Y. Zhang et al., 2019).

2.2. Evaluating Storage via Water Balances

Following McCormick et al. (2021), we estimate a lower‐bound (minimum) on the maximum annual root‐zone
storage deficit (SR) using the mass balance approached outlined byWang‐Erlandsson et al. (2016) and modified to
account for snow cover by Dralle et al. (2021) (500 m pixel scale). The technique takes the running integrated
difference of land‐atmosphere water fluxes exiting (Fout [L/T] = ET) and entering (Fin [L/T]= P) at a pixel. ET is
sourced from PML V2 (500 m pixel scale; Y. Zhang et al., 2019) to represent Fout and P (rain + snow meltwater
equivalent; C. Daly, 2013) is extracted from PRISM (4,638.3 m pixel scale; C. Daly et al., 2015), to represent Fin.
Input data was converted from native resolution (shown in parentheses above) to 1,000 m and re‐projected to the
World Geodetic System 1984 (EPGS:4326) for analysis.

First, the accumulated difference between Fout and Fin is taken for timeframe tn to tn+1 and corrected for the
presence of snow based on a snow cover threshold:

Figure 2. During the study period (1 October 2002–30 September 2017), the annual deficit returned to zero every year for the regions shown in brown (map on the left).
Regions shown in teal and orange, respectively, did not reset in some years (<33% of the study period) or did not reset frequently, often for multiple years in a row
(>33%). For each category, a corresponding example time series of the study period is shown on the right with the relevant fluxes necessary to compute root‐zone
storage deficit. In forests covering over 26,500 km2 (land covers 1–5 in Figure S14 in Supporting Information S1), the root‐zone storage deficit does not reset annually.
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Atn→tn+1 =∫

tn+1

tn

(1 − ⌈C − C0⌉) ⋅Fout − Findt (1)

where C0 is a pre‐defined threshold percentage of snow cover, C is snow cover, and ⌈·⌉ is the ceiling operator
(rounds up to the nearest integer). When snow cover exceeds the threshold (i.e., C > C0), the expression
(1 − ⌈C − C0⌉) returns 0, ignoring ET when snow is present by setting Fout = 0; when C ≤ C0, (1 − ⌈C − C0⌉)
returns 1 and Fout remains unaltered. This effectively avoids erroneously accumulating a storage deficit from ET
during snowmelt when water may be infiltrating into the root zone (without the need to run a full snowmelt
model). We use the Normalized Difference Snow Index (NDSI) snow cover band (Hall et al., 2016) to compute
snow cover and set the snow cover threshold to 10%.

Second, the instantaneous root‐zone storage deficit can be determined iteratively via the following equation:

Dtn+1 = max(0, Dtn + Atn→tn+1) (2)

where Dtn+1 is the deficit at time tn+1. If the deficit falls below zero, the cumulative volume resets to zero as the
subsurface has been replenished with water.

At each pixel, we compute the annual maximum observed deficit (Dmax, evaluated October 1 → September 30)
and infer it to be a lower‐bound on annual root‐zone storage deficit (SR = Dmax). Crucially, this assumes the root‐
zone storage deficit is replenished on a year‐to‐year basis which, in many parts of western US, has been shown to
not be the case (e.g., Figure 2; Cui et al., 2022; Goulden & Bales, 2019; Hahm et al., 2022). We then separately
calculate the root‐zone storage deficit over the entire study period without enforcing annual replenishment to
investigate multi‐year deficit accrual using the non‐resetting deficit model outlined in Section 2.3. We use
Equation 2 to calculate D and track ET in excess of Ssoil to infer the amount of evapotranspiration sourced from
bedrock between 1 October 2002 (start) and 30 September 2017 (end):

Smax
tstart→tend

= max(Dtstart
, Dtstart+1

, …, Dtend) (3)

Sbedrock(a), the minimum annual amount of evapotranspiration sourced from bedrock water storage when resetting
the deficit annually, is inferred to be the difference between the median (across years) annual maximum root‐zone
storage deficit and the soil water storage capacity reported by the Gridded National Soil Survey Geographic
Database (Survey Staff, 2019). If the mean annual maximum root‐zone storage deficit does not exceed the re-
ported value by gNATSGO, we take this to mean that Sbedrock(a) is not needed to explain annual evapotranspiration
and set Sbedrock(a) = 0. This does not necessarily mean that bedrock water storage was not used to support
evapotranspiration, but rather that this deficit tracking approach is unable to detect it.

2.3. Accounting for Multi‐Year Deficit Accrual

The non‐resetting deficit model represents an alternative approach to calculating Sbedrock, and is employed here as
a means of corroborating the annually resetting mass balance inferences described above as well as account for
regions where multi‐year deficit accrual has been shown to occur (see Figure 2). Hereafter, all methods and results
will be presented using the multi‐year deficit approach and will follow the nomenclature Sbedrock(my) to differ-
entiate from the original, annually resetting water balance model (Sbedrock(a)). As above, the approach tracks the
incoming and outgoing fluxes in excess of soil capacity to infer bedrock storage dynamics. However, the method
presented below differs from the original water balance method in that it does not assume the deficit is reset
annually, allowing for larger D values when ET > P for extended periods (e.g., drought). To do so, the model
prioritizes Ssoil use during plant transpiration and prioritizes refilling Ssoilwhen P > ET and Ssoil has not been fully
replenished. Ssoil and Sbedrock can be used simultaneously (e.g., Cai et al., 2023; Rose et al., 2003), however, our
model assumes only Ssoil can be used when both are present. Because we have instructed the model to explicitly
refill and deplete Ssoil prior to bedrock use, the results also produce a lower‐bound (conservative) estimate to
Sbedrock(my), as before.

Water Resources Research 10.1029/2023WR036719

EHLERT ET AL. 7 of 22

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036719, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



First, we iteratively calculate the quantity of storage at each timestep during the study period:

Stn→tn+1 = Stn + (Ptn+1 − ETti+1) (4)

where S is the running storage and Ptn+1 and ETtn+1 are the total precipitation and evapotranspiration between
timesteps tn and tn+1, respectively. Soil storage is assumed to be full at the beginning of the study period and,
therefore, S is set to Ssoil at tn.

To calculate Sbedrock(my), running soil storage must be constrained by soil storage capacity:

Stn+1 = 0 if Stn+1 < 0

Stn+1 = Ssoil if Stn+1 > Ssoil
(5)

where Ssoil is the maximum amount of plant‐available water capable of being stored in the soil profile. The lower‐
bound limit to storage is set at zero as storage cannot, by definition, be negative.

The total evapotranspiration inferred to be sourced from bedrock from time tn to tn+1 is then calculated by taking
the total ET in excess of soil storage:

Sbedrock(my)tn+1
= 0 if ETtn+1 − Stn+1 < 0

Sbedrock(my)tn+1
= ETtn+1 − Stn+1 ifETtn+1 − Stn+1 > 0

(6)

Under these conditions, evapotranspiration sourced from bedrock can only occur once Ssoil is fully depleted and
assumes that all incoming inputs (i.e. P) are used to replenish Ssoil before Sbedrock(my). In other words, plant
transpiration is assumed to prioritize the use of Ssoil over Sbedrock(my) and subsurface storage dynamics prioritize
refilling Ssoil prior to Sbedrock(my). By retaining the difference between ET and S, the equation effectively accounts
for the edge case scenario where only a portion of ET is sourced from bedrock during the timestep. For com-
parison to the original water balance method, the results are provided at an annual scale by taking the median
value of the summed Sbedrock(my) for each water year.

We additionally report the distribution of pixels that have observed multi‐year deficit accruals during the study
period to investigate the influence of extended drought conditions on water partitioning. Between 1 October 2002
and 30 September 2017, we calculate the number of years where the deficit was not replenished by taking the
minimum root‐zone storage deficit (Dmin) observed each water year for all pixels. If Dmin > 0 in a given water
year, we take that to mean that the deficit was not replenished in that water year. The resulting pixels were divided
into three classes: (a) Deficit resets annually (all years), (b) Deficit resets most years (>66.6% of the years), and
(c) Deficit resets intermittently (<66.6% of the years) (Figure 2).

In the following sections, we outline the processes used to investigate the role of Sbedrock(my) on water partitioning,
latent heat fluxes, and dry‐season plant transpiration timing. In each case, the methods are informed using the
modified water balance that accounts for non‐resetting deficits and, thus, provides a more accurate estimation of
bedrock water use.

2.4. Water Partitioning and Timing

Within the Budyko (1974) framework, the long‐term partitioning of P into ET andQ is a function of the long‐term
ratio of PET to P. Under these conditions, Q is assumed to include both overland flows and lateral subsurface
flows resulting from infiltration, and storage changes are assumed to be negligible (ΔS ≈ 0). We took observed
evaporative indices (ϵobs= ET/P) by dividing the median annual evapotranspiration by precipitation for the 2003–
2017 water years using data collected from the gridded products described above. We also infer what the
evaporative index would be if plants did not have access to bedrock water (ϵw/o bedrock) by removing Sbedrock(my)

(the minimum amount of bedrock water used in year when accounting for multi‐year deficit accrual) from the
observed evaporative index. If SR does not exceed Ssoil, then our method cannot detect the influence of bedrock on
the evaporative index:
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ϵw/o bedrock{
ETobs / P if SR ≤ Ssoil

(ETobs − Sbedrock(my)) / P if SR > Ssoil
(7)

Following this, the relative change (expressed as a percentage) in evaporative index without access to bedrock
water is the difference between ϵw/o bedrock and ϵobs relative to ϵobs:

Δϵ = (
ϵw/o bedrock − ϵobs

ϵobs
) ∗ 100 (8)

Streamflow data from 128 minimally impacted USGS watershed gauges in the western US are in agreement
(Nash‐Sutcliffe efficiency of 0.93) with the precipitation (PRISM) and evapotranspiration (PML) data used in our
analysis (Figure S2 in Supporting Information S1). Therefore, we find it reasonable to estimate Q from the water
balance (i.e., Q = P − ET). Because our analysis is performed at the pixel rather than catchment scale, there is
potentially a greater risk of difficult‐to‐quantify net inter‐pixel groundwater flow. However, the pixel scale in this
study is generally greater than the scale of individual hillslope‐channel units, where lateral groundwater flows
could be expected to be most relevant. Furthermore, because pixels with depths to bedrock >1.5 m were masked
from the analysis, convergent valley bottoms where net import of groundwater may be likely to occur tend to be
excluded from our analysis. We calculated the runoff ratio (RR) as the difference between one and the observed
evaporative index (RR = 1 − ϵ).

Finally, we compute the median first month of year (MOYbedrock) when bedrock must be used to explain observed
evapotranspiration, by determining the observed month (for the 2003–2017 water years) when Sbedrock(my) is first
used based on the methods outlined in Section 2.3, implying any evapotranspiration sourced from the subsurface
from the start of the deficit accrual to beyond this date must include water sourced from bedrock storage. This
does not mean that bedrock storage was not accessed in prior months but rather that it cannot be tracked using the
deficit approach. As such, MOYbedrock represents the latest possible month that plants must be using, or have
already used, bedrock water to sustain plant transpiration.

2.5. Energy Partitioning

In the following section, we infer the monthly total latent heat flux associated with evapotranspiration sourced
from bedrock. The latent heat, that is, the energy required to change from the liquid to vapor phase, is equal to the
energy required to evaporate the accrued monthly deficit (in mm of water) beyond that provided by soil. We report
this value in units of power per unit of area (W/m2).

First, following the processes outlined in Section 2.3, the total evapotranspiration inferred to be sourced from
bedrock water storage between 2 months is computed using Equations 4–6 where tn and tn+1 are the first day of the
targetmonth and followingmonth, respectively. Because the period of coverage forET (PMLV2) is 8 days, Sbedrock

(my)must be adjusted to account for the missing coverage at the beginning and/or end of each month (i.e., when the
acquisition dates do not fall on the first of eachmonth). If this is the case,ET is converted to daily scale (i.e. divided
by 8) and only the proportion of ET that occurred during the target month is counted by multiplying the daily value
by the number of days in the target month. This method assumes ET is constant during the 8‐day return period.

The above calculation assumes that plants first exhaust any available soil water and subsequently use bedrock
water. If plants exhaust soil water and bedrock water simultaneously throughout the dry season, the method used
here to quantify the total latent heat flux associated with bedrock water during the dry season is not erroneous but
rather would shift the bedrock‐associated latent heat flux patterns earlier into the dry season.

Second, Sbedrock(my),month (mm) is converted to power per unit area metric (Ee) based on the enthalpy of vapor-
ization of a known mass of water:

Ee = (Sbedrock(my),month) ∗ (ρw) ∗ (ΔHv) ∗ (1/t) (9)

where ρw is the density of water (1,000 g/L), ΔHv is the latent heat of vaporization of water (2,257 J/g), which we
do not adjust for local variations in temperature or pressure, and t is the total seconds between the ith and i + 1st
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month (1 mm of liquid water per square meter is 1 L). The resulting value is a median latent heat flux per second
(i.e. power, W) per m2 (unit area) for a given time frame.

3. Results
Our primary findings are that (a) soil water storage capacity (Ssoil) does not explain deviations from the Budyko‐
curve in asynchronous climates (Figure S4 in Supporting Information S1), (b) the proportion of terrestrial pre-
cipitation returned to the atmosphere (vs. streamflow) is strongly influenced by plant use of bedrock water re-
serves (Figure 4), (c) subsurface storage deficits are not always fully replenished in a given year (Figure 2), (d)
Sbedrock is needed to sustain dry season plant transpiration early into the growing season (Figure 5), and (e) the
summer latent heat flux associated with evapotranspiration of bedrock water is substantial (Figure 7) and warrants
further research with respect to land surface energy interactions. Below, we expand on these findings and
highlight particular regions of interest where Sbedrock plays an important role in the local water and energy par-
titioning patterns.

3.1. Deviations From the Budyko‐Curve Are Poorly Explained by Soil Water Storage Capacity

Across the asynchronous climate (ASI ≥ 0.40) study area, the aridity index explains the primary trend in the
evaporative index for individual pixels, consistent with the Budyko (1974) findings for catchments (Figure 3).
However, for a given aridity index, there remain deviations from the curve. It is a commonly hypothesized that,
for a particular climate (here, in addition to controlling for PET/P also controlling for seasonality by virtue of the
large ASI), subsurface storage deficit may explain deviations from the Budyko‐curve (Miller et al., 2012). Using
the catchment characteristic n to quantify differences in the evaporative index for a particular aridity index (H.
Yang et al., 2008), where higher n denotes higher ET/P for a given aridity index, we find that soil water storage
capacity (Ssoil) alone does not explain (R

2 = − 0.01) the variance in n and, therefore, is a poor explanation for
deviations from the Budyko‐curve across western US (Figure S4 in Supporting Information S1 inset). Indeed, Ssoil

accounts for only a portion of the below‐ground storage capacity and, in many places, is comparatively small
relative to Sbedrock (e.g., McCormick et al., 2021). Moreover, removing ET sourced from bedrock (Sbedrock(my))

Figure 3. The Budyko (1974) plotting space with the Budyko curve (dashed black line), that is,
ET
P = {ϕp tanh( 1ϕp

)[1 − exp (− ϕp)]}

1
2
, compared to observed ET/P versus PET/P (green) and observed ET − Sbedrock(my)/P

versus PET/P (orange) during the study period (2003–2017 water years) in western CONUS. Observed ET/P is binned every
4% (i.e., 25 bins) based on the median value and smoothed using the Savitzky‐Golay filter function (available in scipy.signal
library). Theoretical water and energy limits are shown in blue and red. Removing evapotranspiration inferred to be a result
of access to Sbedrock(my) dramatically lowers the curve.

Water Resources Research 10.1029/2023WR036719

EHLERT ET AL. 10 of 22

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036719, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



drastically shifts the Budyko‐curve downwards (Figure 3), further high-
lighting the importance of including both Ssoil and Sbedrock in the context of
hydrologic partitioning.

3.2. Large Proportions of the Precipitation Returned to the Atmosphere
Is Sourced From Sbedrock

In the following section, the spatial patterns of Sbedrock, ET/P, and Q/P in the
western US, derived using the annual (Sbedrock(a)) and multi‐year (Sbedrock(my))
water balance methods, are presented. Figure 4 shows the spatial patterns of
evapotranspiration inferred to be sourced from bedrock and relative change in
runoff ratio without access to bedrock (ΔQ/P) using the multi‐year water
balance method (see Figure S9 in Supporting Information S1 for derivation).
In each case, areas shown in gray represent pixels where bedrock‐derived ET
was unable to be identified by the proposed methods.

Broadly, both evapotranspiration inferred to be sourced from bedrock
(Sbedrock(my)) and relative runoff ratio without access to bedrock water
(ΔQ/P) increases southward from the USA‐Canada border (Figure 4). The
opposite is true for relative evaporative index (ΔET/P), which decreases
southward toward the USA‐Mexico border (Figure S6 in Supporting In-
formation S1). In particular, the Northern California Coast Ranges, the
southern Cascades, the Transverse Ranges and the Sierra Nevada are most
reliant on Sbedrock(my) for dry season plant transpiration. The median
change in relative runoff ratio (evaporative index) of all pixels in the
western US that detected Sbedrock(my) use was +26.0 (− 25.9)% using the

Figure 5. Typical month in which the annual root‐zone storage deficit (SR)
exceeds the soil water storage capacity (Ssoil), implying plant transpiration
beyond this point must be using Sbedrock(my) to sustain transpiration and
growth. Bedrock water is accessed very early into the growing season for
many parts of the western US.

Figure 4. (a) Median annual evapotranspiration inferred to be sourced from bedrock water relative to annual
evapotranspiration when accounting for multi‐year deficit accrual. (b) The relative change in runoff ratio when
evapotranspiration inferred to be sourced from bedrock storage (Sbedrock(my)) is removed, that is, (ET − Sbedrock(my))/P.
(a) Inspired by Figure 3 of McCormick et al. (2021). Across large areas of the western US, annual evapotranspiration would
be hundreds of millimeters less and the proportion of precipitation returned to the streams would increase without access to
bedrock water.
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multi‐year deficit method (Figure 4, Figures S8 and S9 in Supporting Information S1). That is to say, access
to bedrock water results in a greater partitioning of P to ET and less to Q. Up to 1,072 mm of evapo-
transpiration is inferred to be sourced from bedrock water with a median value of 93.7 mm across all pixels
(Figure 4). Evapotranspiration sourced from bedrock using the deficit approach (i.e., SR < Ssoil) could not be
detected in areas highlighted in gray. These areas are mostly limited to the coastal Pacific Northwest, where
the aridity index tends to be lower than the rest of the region (Figure S3 in Supporting Information S1), and
account for roughly one quarter of all pixels in the study.

The annual water balance model driven by a resetting deficit makes qualitatively similar estimates to the multi‐
year deficit approach. However, the annual approach drastically underestimates the contribution of Sbedrock in
areas that do not reset annually (Figures S5 and S11 in Supporting Information S1). The median difference
between Sbedrock(my) and Sbedrock(a) was 41.8 mm and, in some cases, several hundred millimeters of bedrock
storage was not accounted for using the annual water balance. For a more detailed view of the spatial distribution
of Sbedrock(a), including full CONUS coverage, see McCormick et al. (2021). The median change in relative runoff
ratio (evaporative index) of all pixels in the western US that detected Sbedrock(a) use was+15.4 (− 13.5)% using the
annual water balance (Figures S6 and S7 in Supporting Information S1). That is to say, access to bedrock water
reserves favors ET overQ. Up to 782 mm of evapotranspiration is inferred to be sourced from bedrock water with
a median values of 49.0 mm across all pixels (Figure S5 in Supporting Information S1).

The percentage of pixels where the deficit was determined to reset most years (>66.6%) and infrequently (<66%)
was 22.9% and 15.4%, respectively (Figure 2). In all categories, the proportion of ET inferred to be sourced from
bedrock storage was greater using the multi‐year deficit approach compared to the annual approach (Figure 6,
Figure S10 in Supporting Information S1). The median proportion of ET inferred to be sourced from bedrock
increased from 10.8% to 20.6%, 14.9% to 30.6%, and 18.3% to 35.9% when accounting for a multi‐year deficit in
regions where the deficit reset annually (all years), frequently (>66% of the years), and intermittently (<66.6%),
respectively. Even in regions where the deficit does reset annually, the proportion of ET sourced from bedrock is
underestimated using the annual water balance because it assumes Ssoil is fully replenished by October 1 and that
P > ET over every timestep of the wet season, both of which are rarely the case.

3.3. Sbedrock Is Needed to Sustain Plant Transpiration Early Into the Growing Season and Contributes
Substantial Latent Heat Flux as Summer Progresses

Regions of high Sbedrock(my) (Figure 4) also correspond to areas that require Sbedrock(my) to sustain plant transpi-
ration early into the growing season (Figure 5, Figure S13 in Supporting Information S1) and involve large
bedrock‐water associated latent heat fluxes in the hot summer months (Figure 7). The median first day of the year
when Sbedrock(my) is needed to account for evapotranspiration is 209 (July 28) and 24.4% of the study area must use
bedrock water to account for ET prior to the beginning of summer (June 21) (Figure S12 in Supporting Infor-
mation S1). As early as June, large portions of western CONUS have a noticeable latent heat flux associated with
ET sourced from bedrock. Across the entire study area, the median latent heat flux is 0.510, 4.51, 14.3, 23.3, and
18.6W/m2 fromMay to September (Figure 7). After removing regions where bedrock is not needed to account for
ET (i.e., gray in Figures 4 and 5), the median latent heat fluxes increase to 1.71, 9.32, 22.9, 35.6, and 27.0 W/m2,
respectively. In some parts of California, there are upwards of 200 W/m2 associated with bedrock‐derived ET
throughout the summer.

4. Discussion
The findings presented in this study highlight the importance of Sbedrock on water and energy partitioning in the
western US. Below we discuss the possible implications of these findings on land‐atmosphere interactions. We
begin by situating our study within the context of the Budyko framework and discuss how this influences hy-
drologic partitioning. We then discuss the role of factors like geology on controlling the amount of Sbedrock and,
consequently, hydrologic, energy, and nutrient partitioning. Finally, we address limitations to our study and offer
potential future opportunities to advance the topic.

4.1. Sbedrock Controls on Water and Energy Partitioning

The catchment water balance in asynchronous climates often deviates substantially from expectations set by the
Budyko curve (Berghuijs et al., 2020; De Lavenne & Andréassian, 2018; Potter et al., 2005; Viola et al., 2017).
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Previous studies have shown the importance of seasonality (Feng et al., 2012; Gerrits et al., 2009; Hickel &
Zhang, 2006; Xing et al., 2018; Yokoo et al., 2008) and water storage capacity (Chen et al., 2013; Cheng
et al., 2022; E. Daly et al., 2019; Donohue et al., 2012; Gentine et al., 2012; Hahm et al., 2019; Hickel &
Zhang, 2006; Milly, 1994a, 1994b; Potter et al., 2005; Rodriguez‐Iturbe et al., 1999; Williams et al., 2012;
Woods, 2003) within the context of the Budyko framework and many have highlighted that ET is favored with
increasing soil water storage capacity (Feng et al., 2012; Milly, 1994a, 1994b; Padrón et al., 2017; Porporato
et al., 2004). We take this analysis a step further, by differentiating soil from bedrock, to elucidate basic features
of how root‐zone water is divided between hydrogeologically distinct subsurface layers. Our results suggest Ssoil

alone poorly explains deviations from the Budyko‐curve (Figure S4 in Supporting Information S1), and indicate
that Sbedrock plays a comparatively larger role on controlling hydrologic partitioning in the western US. This is
confirmed by our findings in Figure 4 and is in agreement with similar findings by McCormick et al. (2021), and
hillslope‐scale observational studies (Dralle et al., 2018; Hahm et al., 2019, 2022; Lapides, Hahm, Rempe,
Dietrich, & Dralle, 2022; Rempe & Dietrich, 2018). Moreover, if Sbedrock influences near‐surface climate
properties in a similar manner to soil moisture (e.g., Brabson et al., 2005; Haarsma et al., 2009; Koster
et al., 2004), current GCMs may under‐estimate the influence of subsurface storage on extreme temperatures and
heat waves (e.g., Diffenbaugh et al., 2007; Seneviratne et al., 2006), precipitation formation (e.g., Alfieri
et al., 2008; Ek & Holtslag, 2004; Taylor, 2015), and changes in planetary boundary layer (PBL) circulation
patterns (e.g., Ookouchi et al., 1984; Sousa et al., 2020). In particular, we highlight the large latent heat flux
patterns associated with bedrock‐derived ET in California, which is rarely accounted for in GCMs, and emphasize
the need for integration of Sbedrock into climate and vegetation models in seasonally dry climates (e.g., Lapides
et al., 2024).

4.2. Sbedrock Influences on Runoff Generation

Some forms of runoff generation require unsaturated storage deficits to be replenished prior to significant runoff
production (McDonnell et al., 2021; Sayama et al., 2011). Recently, Lapides, Hahm, Rempe, Whiting, and
Dralle (2022) showed that the “missing” snowmelt runoff during the 2021 spring melt period in California
(California Department of Water Resources, 2021) could be attributed to deep root‐zone storage deficits caused

Figure 6. The proportion of annual evapotranspiration that is sourced from Sbedrock when the deficit is reset annually
(Sbedrock(a)) versus not reset annually (Sbedrock(my)). Boxplots are grouped based on the three classes outlined in Section 2.3
and match the color of the pixels in Figure 2. Two‐sample Kolmogorov‐Smirnov (K‐S) tests yielded p‐values < 0.0001 for
each classification. The number of pixels for each class is found between each boxplot pairing. Pixels that did not detect
bedrock‐derived ET were excluded from the plot. The water balance method informed by an annual resetting deficit
underestimates Sbedrock contribution in asynchronous climates.
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by drought conditions. These areas, and many other parts of the western US, have among the largest observed SR

in the contiguous US and the fraction of SR attributed to bedrock is substantial (McCormick et al., 2021). Our
results agree with these findings and highlight that Sbedrock has major implications for runoff generation in the
mountainous West. Deficit‐based approaches represent a potential method for scaling up hillslope (e.g., S. P.
Anderson et al., 1997; Salve et al., 2012; Tromp‐van Meerveld et al., 2007) and catchment (e.g., Ajami
et al., 2011; Sayama et al., 2011) studies to explain and predict runoff production—the “Holy Grail” of hydrology
(Beven, 2006)—at large scales. While our findings suggest bedrock storage heavily influences runoff patterns,
especially in southwest of the study area (Figure 4), there is a need for more studies investigating these dynamics
and, in particular, field‐scale studies to confirm the trends presented here.

4.3. Geological Influences on Sbedrock as a Controlling Factor in Vegetation Structure

Evidence supporting the notion that forest ecosystems rely on moisture stored in weathered bedrock to sustain
dry season growth goes back several decades (e.g., Arkley, 1981; Jones & Graham, 1993). In many cases,
bedrock water constitutes a majority of the total subsurface water available to sustain plant transpiration (e.g.,
M. A. Anderson et al., 1995; McCormick et al., 2021; Rose et al., 2003). Here, we demonstrate that bedrock

Figure 7. Median latent heat flux (equivalent units to solar irradiance, W/m2) used in evapotranspiration that is sourced from
Sbedrock during the growing season. In large parts of the western US, in particular northern California and the Sierra Nevada
mountain ranges, a large latent heat flux is associated with evapotranspiration of bedrock water every summer.
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storage dynamics influence water and energy partitioning at large scales and throughout many parts of the
western US. It is, therefore, necessary to discuss the controlling factors on bedrock formation and structure as
these properties dictate the quantity of plant‐available water held in fresh and weathered bedrock. The extent of
bedrock weathering impacts pore size distribution with depth, and therefore plant‐available water storage
properties (Dawson et al., 2020; Klos et al., 2018). These properties in turn depend on climate, tectonics, and
geology (Riebe et al., 2017). The mechanisms responsible for the transformation of fresh to weathered bedrock,
which in turn increases subsurface moisture storage potential, are well established (see for overview, e.g.,
Brantley, 2010; Graham et al., 2010) but remain difficult to investigate due to limitations in accessing deep
bedrock samples (see for overview, e.g., Zanner & Graham, 2005). Recently, studies have begun investigating
the role of geology as a bottom‐up control on root‐zone storage capacity. One example of a study using deep
bedrock samples found that root‐zone storage deficits and plant community composition differed drastically in
two adjacent, climatically similar watersheds in California due to contrasting geological substrates (Hahm
et al., 2019). In another study, Hahm et al. (2024) used water fluxes to highlight areas where geologic substrates
overlapped with lower than “climatically expected” SR and argued that plant transpiration in these areas is
inhibited directly by porosity and/or permeability (e.g., Hahm et al., 2019; Jiang et al., 2020; H. Liu
et al., 2021) or indirectly via nutrient limitation (e.g., Hahm et al., 2014) and toxicity (e.g., Kruckeberg, 1992).
However, research in this area remains limited owing to the fact that weathered bedrock profiles are chal-
lenging to access and investigate.

4.4. The Role of Sbedrock on Biogeochemical Cycling

Our findings that plant water use from bedrock impacts water partitioning has implications for biogeochemical
cycling. The importance of soil respiration in the global carbon cycle is well‐documented (Janssens et al., 2001;
Schimel, 1995). However, it remains a challenge to quantify the extent to which carbon dioxide (CO2) is produced
below the near‐surface soil mantle in weathered bedrock. In Northern California, weathered bedrock has been
shown to produce a substantial amount of CO2 by contributing to soil efflux and as an inorganic carbon flux to
groundwater and stream water (Tune et al., 2020). Similar findings in France suggest bedrock‐derived CO2 pro-
duction can rival soil respiration (Soulet et al., 2021).Moreover, rock respiration can lead to increased porosity and
weathering (Kim et al., 2017; Winnick et al., 2017) and remains active during the dry season after soil water has
been fully depleted (Tune et al., 2020). The role of bedrock on nutrient cycling is not limited to carbon. Bedrock is
the largest terrestrial nitrogen reservoir on Earth (Johnson&Goldblatt, 2015) and, yet, most nitrogen cycle models
do not account for bedrock‐derived nitrogen. For example, forests have been shown to source a similar amount of
nitrogen from weathered bedrock compared to atmospheric sources in the Klamath Mountains (Morford
et al., 2016). Findings byWan et al. (2021) suggest that between 10% and 20% of global terrestrial N‐N2O fluxmay
be sourced frombedrockweathering.Many other nutrients, including those that are primarily derived frombedrock
mineral weathering (e.g., phosphorus, calcium, magnesium, etc.), are essential to plant growth.

The vertical and lateral flow of water in the subsurface regulates chemical weathering and nutrient cycling
(Brantley et al., 2017; Manning et al., 2013; Torres et al., 2015). Bedrock fractures and soil matrix have different
hydrologic properties, resulting in preferential flow patterns that alter how water interacts with mineral surfaces
(Nimmo, 2021; Salve et al., 2012). For example, the distribution of water expedites weathering in the form of ion
transport (Buss et al., 2008), dissolution (Hasenmueller et al., 2017), biological weathering (Finlay et al., 2020;
Pawlik et al., 2016), and more. Recently, the Critical Zone (CZ) sciences community has proposed methods for
predicting weathered bedrock patterns (Riebe et al., 2017) based on advancements in geophysics (e.g., Slim
et al., 2015; St. Clair et al., 2015), geochemistry (e.g., Brantley et al., 2013; Lebedeva &Brantley, 2013; Lebedeva
et al., 2007), and geomorphology (e.g., R. S. Anderson et al., 2013; Rempe & Dietrich, 2014). A reliable and
testable method for predicting weathered bedrock patterns could provide the additional context necessary to
formulate and test hypotheses on the role of bedrock on nutrient and water cycling. It is often thought that, under
an evolving climate, the distribution of vegetation is primarily controlled by climate variables. However, some
research suggests that geologic factors may have a stronger impact on regional diversity and, therefore, priori-
tizing the protection of geophysical settings is more appropriate for long‐term conservation of biodiversity (M. G.
Anderson & Ferree, 2010). Although our findings primarily focus on the magnitude of bedrock water, we un-
derscore the necessity to further investigate the link between and bedrock water and biogeochemical cycles as we
move toward a holistic approach in CZ sciences.
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5. Limitations
Throughout this paper, several assumptions have been made that require further discussion. First, the assumption
that ET does not contribute to Fout when a pixel is snow covered is not a presumption of how ET would function
during the winter but a conservative assumption in light of uncertainties regarding snowmelt dynamics. ET may
be considerable when snow cover is present and during snowmelt periods (e.g., Cooper et al., 2020; Kelly &
Goulden, 2016; Kraft &McNamara, 2022) but implementing a spatially and temporally resolved snowmelt model
at this scale would be challenging. Not allowing for ET to occur during snowmelt periods results in an under-
estimation of ET (Dralle et al., 2021) and would, therefore, result in smaller Sbedrock values. Second, our analysis
occurs at pixel scale but is placed in the context of the Budyko framework, which is traditionally applied at the
catchment scale under steady‐state conditions. Recently, the validity of assuming negligible long term storage
change at catchment‐scale has been challenged (e.g., Condon et al., 2020; Fan, 2019; Safeeq et al., 2021) and few,
if any, studies have considered these implications at pixel scale. For the purpose of the above analysis, the
masking process excludes topographically convergent pixels (i.e., valleys). Even at steady‐state, inter‐pixel flux
movements may not be zero but, due to the pixel selection process, are likely to be net exporters of water. In other
words, the assumption would result in a net loss of water in the root‐zone over time and, thus, the reported values
of SR and Sbedrock are minimum estimates. Our methods cannot determine whether water was sourced from the
unsaturated or saturated zone and are unable to detect deep groundwater movement.

Basing our study on distributed, remotely sensed, or spatially interpolated data sets may introduce substantial
uncertainty in the results. All remotely sensed data is inherently limited by systematic errors (e.g., cloud filtering,
sensors, etc.) and relies on ground truth data to validate uncertainty. The deficit‐based approach used to estimate
SR and, by extension Sbedrock, is reliant on the accuracy of the water flux data (i.e., P, ET) and, thus, warrants
further discussion. Remotely sensed ET remains one of the most challenging water fluxes to accurately predict
due to the complexity of the atmospheric and surface conditions that inform ET models. PML and other satellite‐
derived ET products tend to over‐estimate ET during the dry season and under‐estimate ET during the wet season
(Awada et al., 2021; Ji et al., 2021). Nevertheless, we are comfortable using PML V2 as it is calibrated using a
widely distributed network of 95 flux towers (Y. Zhang et al., 2019) and performs strongly when compared
against other ET products (He et al., 2022; Tao et al., 2024). Many of the areas highlighted in this study include
mountainous regions which are difficult to validate owing to the lack of distributed observation networks (Bales
et al., 2006). PRISM has been shown to under‐estimate precipitation in complex, high‐elevation terrains (e.g.,
Henn et al., 2018; Kunkel et al., 2013; Lundquist & Cayan, 2007) which would result in higher estimates of SR and
Sbedrock. Indeed, C. Daly et al. (1994) recognized these limitations to PRISM in their original model formulations
and have made efforts to adjust the physiographically sensitive PRISM interpolation process over time (C. Daly
et al., 2008). Subsequent studies have shown strong agreement between PRISM grids and ground‐truthed tem-
perature (Strachan &Daly, 2017) and precipitation (C. Daly et al., 2017) data and, in our study area, we found that
precipitation (PRISM) in excess of evapotranspiration (PML) aligned well with USGS streamflow data in 128
minimally impacted catchments (Figure S2 in Supporting Information S1 and Rempe et al., 2022).

Due to challenges in directly observing water storage dynamics and plant uptake in bedrock there are limited field
data to validate our inferences; however, McCormick et al. (2021) synthesized existing data sets and found the
observations that were consistent with deficit‐based methods. Moreover, the selected time series representing the
three classes of deficit replenishment (colored stars in Figure 2) were not chosen at random, but rather, are three
field sites where extensive subsurface storage dynamics have been monitored (brown: Rempe & Dietrich, 2018,
teal: Hahm et al., 2022, and orange: O’Geen et al., 2018). In each case, our findings align well with the in situ
observations presented by the above studies. The accuracy of satellite‐based data has improved dramatically in
recent decades (Dubovik et al., 2021) and, when coupled with finer‐scale field studies (i.e., watershed to hill-
slope), allows for regional study of topics that underpin important hydrologic problems.While we are confident in
the data presented here we emphasize the need to further implement field‐based studies.

An additional source of uncertainty lies in using gNATSGO, a composite spatial database derived from upscaling
point‐based samples, as a means of inferring Sbedrock. However, we feel comfortable using “soil available water
storage” (reported as AWS in the gNATSGO database) to estimate Sbedrock for the following reasons: (a) the
masking process, as outlined by McCormick et al. (2021), selects for AWS values with a high “likely value”
returning the largest likely Ssoil value, and (b) the deficit‐based approach to SR represents a minimum root‐zone
storage deficit and therefore would under‐estimate the contribution of Sbedrock to SR. Our estimates are not meant
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to represent the absolute value of Sbedrock, rather, a lower‐bound estimate of the contribution of Sbedrock to water
and energy partitioning. Nevertheless, we additionally report the estimated value of Sbedrock(my) under the
assumption that Ssoil is twice the value reported in gNATSGO (Figure S15 in Supporting Information S1; inspired
by McCormick et al. (2021) Figure S8 in Supporting Information S1) to highlight the difference in magnitude
between Sbedrock and Ssoil. Even after doubling Ssoil, the mean value of Sbedrock(my) is 52.0 mm and increases to a
mean (median) value of 119 mm (88.7 mm) after removing pixels where Sbedrock(my) cannot be detected.

6. Conclusion
In this study, we introduce a simple and reproducible annual water balance framework for assessing the role of
Sbedrock(a) on water partitioning within the context of the Budyko framework. We then argue that this method does
not accurately represent the extent of subsurface storage dynamics and introduce a modified water balance
method that accounts for multi‐year deficit accrual. We employ this framework to investigate the timing of
evapotranspiration inferred to be sourced from Sbedrock(my) and the magnitude of summer latent heat flux produced
as a result of access to Sbedrock(my). Our findings suggest that, in the western contiguous US: (a) the deficit
frequently does not reset annually; (b) Sbedrock is necessary to explain plant transpiration very early into the
growing season; (c) the proportion of precipitation returning to atmosphere would drastically decrease without
access to Sbedrock(my); (d) the amount of latent heat flux produced as a result of evapotranspiration sourced from
bedrock is substantial during the summer; and (e) the magnitude of evapotranspiration sourced from Sbedrock(my) is
greater in regions where the deficit does not reset annually. These results confirm that Sbedrock plays a key role in
the local hydrologic cycle, alters water and energy partitioning properties, and potentially influences the severity
and frequency of wildfire and mass die‐off events. Further research contributing to the role of Sbedrock on the land
surface energy balance—for example, extreme temperatures, heat waves, wind patterns, etc.—would prove
beneficial in understanding the factors governing tree death and wildfire, an issue that is prevalent across the
western US.

Data Availability Statement
Flux data (ET, P, PET, and Q) were obtained from Penman‐Monteith‐Leuning Evapotranspiration (Y. Zhang
et al., 2019), Parameter‐elevation Regressions on Independent Slopes Model (C. Daly, 2013), TerraClimate
(Abatzoglou et al., 2018), and Catchment Attributes and Meteorology for Large‐sample Studies (Newman
et al., 2015), respectively. Land cover, soil water storage, and snow cover were obtained from USGS National
Land Cover Database (Jin et al., 2019), Gridded National Soil Survey Geographic Database (Survey Staff, 2019),
and the National Snow and Ice Data Center (Hall et al., 2016). All data products were analyzed using the Google
Earth Engine Python API (Gorelick et al., 2017). Data, figures, and code associated with this manuscript are
available publicly on HydroShare (Ehlert et al., 2024).
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